

DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

QUESTION BANK

V SEMESTER

DIGITAL SIGNAL PROCESSING

Regulation – 2017 & 2019

Prepared by

Mr. J. Ramesh , Assistant Professor/ EEE

ST. ANNE'S COLLEGE OF ENGINEERING AND TECHNOLOGY

(Approved by AICTE, New Delhi. A filiated to Anna University, Chennai) ANGUCHETTYPALAYAM, PANRUTI - 607 106.

DEPARTMENT OF ELECRICAL AND ELECTRONICS ENGINEERING

SUBJECT : DIGITAL SIGNAL PROCESSING

SEM / YEAR: V/III

UNIT I - INTRODUCTION

Classification of systems: Continuous, discrete, linear, causal, stability, dynamic, recursive, time variance; classification of signals: continuous and discrete, energy and power; mathematical representation of signals; spectral density; sampling techniques, quantization, quantization error, Nyquist rate, aliasing effect.

	PART – A			
Q.No	Questions	СО	BT Level	Competence
1.	Define the term Nyquist rate.	CO1	K1	Remember
2.	Discuss about the Shannon's sampling Theorem	CO 1	K 2	Understand
3.	Define aliasing effect.	CO1	K 1	Remember
4.	Distinguish even and odd signals with an example for each.	CO1	K 2	Understand
5.	Given a continuous time signal $x(t)=2\cos 500\pi t$. Evaluate the Nyquist rate and fundamental frequency of the signal?	CO1	K5	Evaluate
6.	Express the sampling techniques.	CO1	K 5	Evaluate
7.	Check whether the given system $y(n)=\cos x(n)$ is linear or not.	CO1	K 6	Create
8.	List any few applications of Digital Signal Processing.	CO1	K 1	Remember
9.	Sketch spectral density and write expression for it.	CO1	K 3	Apply
10.	Define energy and power signals. Given an example for	CO1	K1	Remember
11.	Point out the different types of system.	CO 1	K 4	Analyse
12.	Classify the types of signals.	CO 1	K 4	Analyse
13.	Define recursive systems.	CO 1	K1	Remember
14.	Analyze the system described by the equation $y(n) = nx(n)$ is linear or not.	CO 1	K4	Analyse
15.	Define the term BIBO stable?	CO 1	K 1	Remember
16.	Define static and dynamic systems with an example.	CO 1	K1	Remember
17.	Is the system $y(n)= x(n) $ linear and time invariant? Justify your answer.	CO 1	K 5	Evaluate
18.	Distinguish between Linear and Nonlinear systems.	CO 1	K 4	Analyse
19.	Check the stability (i) $y(n)=a^n u(n)$ (ii) $y(n)=(1/2)^n u(n)$	CO 1	K 1	Remember
20.	Discuss the term quantization and quantization error?	CO 1	K 2	Understand
21.	Distinguish between power and energy signal with an	CO 1	к4	Analyse
22.	Write the necessary and sufficient conditions for BIBO.	CO 1	K 1	Remember

23.	Find the Nyquist rate for the following signal		CO 1	K 3	Apply				
	$x(t)=20\cos 400\pi t+10\sin 200\pi t$				11.7				
24.	Compute the total energy of the signal $x(n)=(1/2)^n u(n)$.		CO 1	K6	Create				
	PART – B								
1.	(i) Define energy and power signal? Also examine whether	(8)	CO 1	BTL 1	Remember				
	the following signals are energy or power or neither energy								
	nor power signals. (1) $x(n)=(1/4)^n u(n)$ (2) $x(n)=\sin(\pi n/3)$								
	(3) $x(n)=u(n)$								
	(ii) Describe the concept of quantization and quantization	(5)	CO 1	BTL 2	Understand				
2	A discrete system is characterized by the difference equation	(12)	CO 1	K 5	Evoluoto				
۷.	A discrete system is characterized by the unterence equation	(13)	01	K J	Evaluate				
	y(n)=x(n)-0.5y(n-1)+0.25x(n-1) Evaluate the system for (1) Linearity (2) Causality (3) Time Invariant (4) Static and (5) Stability.								
3.	(i) Demonstrate which of the following systems are stable	(8)	CO 1	K 3	Apply				
	(1) $v(n) = \cos v(n)$ (2) $v(n) = \cos v(n)$								
	$(1) y(1) = \cos x(1) $ (2) $y(1) = ax(1)$								
	(3) $y(n)=x(n) e^{n}$ (4) $y(n)=a^{x(n)}$								
	(ii) Demonstrate which of the following systems are								
	causal or non causal.	(5)	CO 1						
	(1) $y(n) = x(n)$ (2) $y(n) = \sum_{k=1}^{\infty} x(n-k)$								
	(-) $(-)$ $(-)$ $(-)$ $(-)$ $(-)$ $(-)$			K 3	Apply				
4.	(i) What is meant by Nyquist rate? Point out of its	(5)	CO 1	K 4	Analyze				
	significance.			K 2					
	(ii) Explain the classification of discrete signal with an	(8)	CO 1		Understanding				
	suitable example.								
5.	(i) Given $y[n]=x[n^2]$, Test whether the system is linear, time	(8)	CO 1	K 5	Evaluate				
	invariant, memoryless and causal.			K 5					
	(ii) Test whether the following is an energy signal or power	(5)			Evaluate				
	signal.(1) $x(n)=(1/4)^n u(n)$ (2) $x(n)=u(n)$ (3) $x(n)=sin(\pi n/3)$		CO 1						
6.	Illustrate the following system is time invariant or not.	(13)	CO 1	к 3	Apply				
	(i) $y(n) = cos(x(n))$ (ii) $y(n) = x(n) $								
	(iii) $y(n)=x(-n)$ (iv) $y(n)=x(n)+nx(n+1)$								

7.	A discrete time systems can be: (1)Static or dynamic	(13)	CO 1	BTL 4	Analyse
	(2)Linear or non Linear (3)Time invariant or time varying				
	(4) Stable or unstable (5)Causal or noncausal. Analyse the				
	following systems (1) $y(n)=x(n^2)$ (2) $y(n)=cos(x(n))$.				
8.	(i) Test the causality and stability of the systems	(6)	CO 1	BTL 5	Evaluate
	y(n)=x(-n)+x(n-2)+x(2n-1).				
	(ii) Test the system for linearity and time invariance	(7)	CO 1		
	$y(n) = (n-1)x^2(n) + c.$			BTL 5	Evaluate
9.	Demonstrate the response of the following systems to the	(13)	CO 1	BTL 4	Analyse
	input signal				
	$(n , -3 \le n \le 3$				
	$x(n) = \begin{cases} 0, & \text{otherwise} \end{cases}$				
	(1) $y(n)=x(n)$ (2) $y(n)=x(n+1)$ (3) $y(n)=x(n+1)$				
	$(4) \mathbf{v}(n) = \frac{1}{2} [\mathbf{x}(n+1) + \mathbf{x}(n) + \mathbf{x}(n-1)]$				
10.	With neat figure explain block diagram of a Digital Signal	(13)	CO 1	K 1	Remember
	Processing System and give its merits and demerits.				
11.	(i) Determine if the signals, $x_1(n)$ and $x_2(n)$ are power,	(6)	CO 1	BTL 2	Understand
	energy or neither energy nor power signals.				
	(1) $x_1(n) = (1/3)^n u(n)$ (2) $x_2(n) = e4^n u(n)$				
	(ii) Discuss about quantization effects while digitizing	(7)	CO 1	BTL 2	Understand
	analog signals for processing.				
12.	Analyze whether the given discrete time system whether or	(13)	CO 1	к4	Analyse
	not the system is Linear, Time Invarient, causal and Stable.				
	(1) $y(n)=x(n+7)$ (2) $y(n)=n x(n) (3)y(n)=x^{3}(n)$.				
13.	(i)Consider the analog signal $x(t)=3\cos(200\pi t)$ (i) Determine	(9)	CO 1	BTL 6	Create
	the maximum sampling rate required to avoid alising (ii) Let				
	the signal sampled rate Fs=400 Hz. Find the discrete time				
	after sampling (iii) Fs=150 Hz. Find the discrete sampling.				
	Find the discrete time after sampling and also obtain				
	sinusoidal yield frequency 0 <f<fs 2.for="" cases,<="" each="" of="" td="" these=""><td></td><td></td><td></td><td></td></f<fs>				
	explain if you can recover the signal x(t) from the samples				
	signal.				
	ii) State and prove the sampling theorem		~ -		
	n, state and prove the sampling theorem.	(4)	CO 1	BTL 1	Remember

14.	(i) Explain the following with respect to discrete-time	(4)	CO 1	BTL 2	Understanding
	system : (1) Stability (2) Static.				
	(ii) Check for following systems are static and stability		CO 1		
	(1) $y(n)=n x(n)$ (2) $y(n)=x(n^2)$ (3) $y(n)=x(n)+3u(n+1)$	(9)	COT	BTL 4	Analyse
15.	Draw and explain the following sequences : (i) Unit sample	(13)	CO 1	BTL 4	Analyse
	sequence (ii) Unit step sequence (iii) Unit ramp sequences				
	(iv) Sinusoidal sequences (v)Exponential sequences.				
16.	Find the following systems are (i) static or dynamic (ii)	(13)	CO 1	K 3	Apply
	stable or unstable.				
	(i) $y(n)=nx(n)$ (ii) $y(n)=a.x(n)$ (iii) $y(n)=x(n2)$				
	(iv) $y(n)=x(n)+3.u(n+1)$				
17.	Illustrate whether the following systems are Causal or not.	(13)	CO 1	BTL 3	Apply
	(i) $y(n)=x(-n)$ (ii) $y(n)=x(n-1)+K x(n-2)$				
	(iii) $y(n)=2x(n-2)+x(n-2)$ (iv) $h(n)=u(n-2)-u(n-3)$				
	(v) $y(n)=x(n+7)$ (vi) $y(n)=nx(n)$				
	PART-C				
1.	(i) Illustrate the condition of the system to be causal and	(8)	CO 1	BTL 3	Apply
	linearity. Check the same for the given system				
	$y(n)=x(n)+[1/{x(n-1)}]$.				
	(ii) Analyze the time invariant and stability of the given		GO 1		
	(ii) Analyze the time invariant and stability of the given system $y(n)=\cos x(n)$.	(7)	CO 1	BTL 4	Analyze
2.	 (ii) Analyze the time invariant and stability of the given system y(n)=cos x(n). (i) Distinguish the following with examples and formulae. 	(7)	CO 1 CO 1	BTL 4 K2	Analyze understanding
2.	 (ii) Analyze the time invariant and stability of the given system y(n)=cos x(n). (i) Distinguish the following with examples and formulae. (1) Energy vs power signal 	(7)	CO 1 CO 1	BTL 4 K2	Analyze understanding
2.	 (ii) Analyze the time invariant and stability of the given system y(n)=cos x(n). (i) Distinguish the following with examples and formulae. (1) Energy vs power signal (2) Time variant vs time invariant signal. 	(7)	CO 1 CO 1	BTL 4 K2	Analyze understanding
2.	 (ii) Analyze the time invariant and stability of the given system y(n)=cos x(n). (i) Distinguish the following with examples and formulae. (1) Energy vs power signal (2) Time variant vs time invariant signal. (ii) What is system? Explain the classification of systems 	(7)	CO 1 CO 1	BTL 4 K2	Analyze understanding
2.	 (ii) Analyze the time invariant and stability of the given system y(n)=cos x(n). (i) Distinguish the following with examples and formulae. (1) Energy vs power signal (2) Time variant vs time invariant signal. (ii) What is system? Explain the classification of systems with an examples. 	(7)	CO 1 CO 1	BTL 4 K2	Analyze understanding
2.	 (ii) Analyze the time invariant and stability of the given system y(n)=cos x(n). (i) Distinguish the following with examples and formulae. (1) Energy vs power signal (2) Time variant vs time invariant signal. (ii) What is system? Explain the classification of systems with an examples. 	(7) (15)	CO 1 CO 1	BTL 4 K2	Analyze understanding
2.	 (ii) Analyze the time invariant and stability of the given system y(n)=cos x(n). (i) Distinguish the following with examples and formulae. (1) Energy vs power signal (2) Time variant vs time invariant signal. (ii) What is system? Explain the classification of systems with an examples. Explain the following Discrete time systems with suitable axample is (1) Static and Dynamic (2) Time variant and stability of the given system. 	(7) (15) (15)	CO 1 CO 1 CO 1	BTL 4 K2 K 5	Analyze understanding Evaluate
2.	 (ii) Analyze the time invariant and stability of the given system y(n)=cos x(n). (i) Distinguish the following with examples and formulae. (1) Energy vs power signal (2) Time variant vs time invariant signal. (ii) What is system? Explain the classification of systems with an examples. Explain the following Discrete time systems with suitable example : (1) Static and Dynamic (2) Time variant and invariant (3) Linear and Nonlinear. (4) Causal and Nonlinear (4) Causal and Nonlinear. 	(7) (15) (15)	CO 1 CO 1 CO 1	BTL 4 K2 K 5	Analyze understanding Evaluate
2.	 (ii) Analyze the time invariant and stability of the given system y(n)=cos x(n). (i) Distinguish the following with examples and formulae. (1) Energy vs power signal (2) Time variant vs time invariant signal. (ii) What is system? Explain the classification of systems with an examples. Explain the following Discrete time systems with suitable example : (1) Static and Dynamic (2) Time variant and invariant (3)Linear and Nonlinear (4) Causal and Noncausal 	(7) (15) (15)	CO 1 CO 1 CO 1	BTL 4 K2 K 5	Analyze understanding Evaluate

4.	(i) Determine the function is stable or not. (1) $y(n) = \sin x(n)$	(9)	CO 1	BTL 4	Analyse
	(2) $y(n)=ax(n)$ (3) $y(n)=cos x(n)$				
	(ii) Analyze the types of signals with its mathematical	(6)			
	expression and with neat diagram.		CO 1	BTL 4	Analyse
5.	(i) Check whether the following system $y(n)=x(n)+nx(n+1)$	(7)	CO 1	BTL 5	Evaluate
	is linear, time invariant, causal and stable.				
	(ii) Evaluate whether the following signal is Energy or	(8)	CO 1		
	Power Signal (1) $x(n)=(3/2)^n u(n)$ (2) $x(n)=(1/4)^n u(n)$			BTL 5	Evaluate
	UNIT II - <u>DISCRETE TIME SYST</u>	EM AN	ALYS	IS	
Z-transt	form and its properties, inverse z-transforms; diffe	erence	equation	u – Sc	olution by z-
transfor	rm, application to discrete systems - Stability analysis, frequencies	uency re	esponse	– Convol	ution – Discrete
Time F	ourier transform, magnitude and phase representation.				
	PART – A				
Q.No	Questions			BT	Competence
1	Define the term ROC of Z_{-} transform? List the properties of		CO^2	Level BTL 1	
1.	Z transform			DILI	Remember
2.	Calculate the inverse z transform of $H(Z)=2Z/(Z-[1/2])$?		CO 2	BTL 3	Apply
3.	Calculate the z-transform and ROC for the signal		CO 2	BTL 3	Apply
	$\mathbf{x}(\mathbf{n}) = \delta(\mathbf{n} \cdot \mathbf{k}) + \delta(\mathbf{n} + \mathbf{k}).$				rippiy
4.	List the methods to find inverse Z transform.		CO 2	BTL 1	Remember
5.	Evaluate the Z-transform of the sequence $x(n) = \{2, 1, -1, 0, 3\}$		CO 2	BTL 5	Evaluate
6.	Solve the following z- transform of a digital impulse signal		CO 2	BTL 3	Apply
	and digital step signal.				
7.	Analyze the condition for stability in Z-domain?		CO 2	BTL 4	Analyse
8.	Calculate the inverse Z – transform of $X(Z) = \log (1-0.5z^{-1})$		CO 2	BTL 3	Apply
	for $ Z > \frac{1}{2}$ using differentiation property				
9.	Analyze the value of Z- transform $x(n) = a^n u(n)$ and its		CO 2	BTL 4	Analyse
	ROC.				
10.	Solve and find the Z transform and its ROC of the discrete		CO 2	BTL 3	Apply
	time signals $x(n) = -a^n u(-n-1)$, $a > 0$.				
11.	Find the stability of the system whose impulse response		CO 2	BTL 3	Apply
	$h(n)=2^{n}u(n)$				
12.	Consider the signal $x(n)= 1 $ for $-1 \le n \le 1$ and 0 for all other		CO 2	BTL 6	Create
	values of n, Formulate, the magnitude and phase spectrum.				
13.	Develop the linear convolution for $x(n)=\{1,2,3,4\}$ and		CO 2	BTL 6	Create
	$h(n) = \{1, 1, 1, 1\}.$				

14.	What is the relation between Z transform and DTFT.		CO 2	К 1	Remember
15.	Find the convolution of the input signal $\{1,2,1\}$ and its		CO 2	BTL 3	Apply
	impulse response {1,1,1} using Z transform.				
16.	Determine the Z-transform of a signal $x(n) = \{1,2,5,7,0,1\}$		CO 2	BTL 5	Evaluate
17.	Discuss and prove the time reversal property of Fourier		CO 2	BTL 2	Understand
	transform.				
18.	Define the term convolution.		CO 2	BTL 1	Remember
19.	Solve and obtain the DTFT of the sequence $x(n) = \{1,1,0.0\}$.		CO 2	BTL 3	Apply
20.	Given a difference equation $y[n]=x[n]+3x[n-1]+2y[n-1]$.		CO 2	BTL 5	Evaluate
	Evaluate the system function H(z).				D 1
21.	State Parseval's relation of DFT.		CO 2	BTL 1	Remember
22.	Find the Z-Transform of $x(n) = \{1, 2, 4, -1\}$ and also find ROC.		CO 2	BTL 3	Apply
23	Evaluate the circular convolution for the following		CO 2	BTL 5	Evoluato
201	sequences $x(n) = \{1, 2, 1\}$ and $h(n) = \{1, -2, 2\}$		002		Evaluate
24.	State the initial and final value theorem for Z-transform.		CO 2	BTL 1	Remember
	PART – B				
1.	(i) Find the Z-transform for the following functions : (1)	(8)	CO 2	BTL 3	Apply
	$x(n)=nu(n)$ (2) $x(n)=u(n)$ (3) $x(n)=sin\omega n$ (4) $x(n)=cos\omega n$.	(5)	CO 2	BTI 2	Understand
	(ii) Explain the properties of Z-transform.	(3)		DIL 2	Onderstand
2.	(i) Determine the pole-zero plot for the system described by	(8)	CO 2	BTL 5	Evaluate
	the difference equation				
	y(n)-(3/4)y(n-1)+(1/8)y(n-2) = x(n)-x(n-1)		~ ~ ~		
	(ii) State and prove convolution and Parseval's theorem	(5)	CO 2	BTL 1	Remember
	using Z transform.				
3.	(i) Find the Z transform and its ROC of	(8)	CO 2	BTL 3	Apply
	$\mathbf{x}(\mathbf{n}) = (1/2)^{ \mathbf{n} } + (-1/2)^{ \mathbf{n} }.$		CO 2	BTL 3	Apply
	(ii) Find x(n) if X(Z)= $(1+[1/2]z^{-1})/(1-[1/2]z^{-1})$	(5)		DILJ	rippiy
4.	(i) Find the inverse z-transform of $X(z) = \frac{4Z}{(Z+1)^2(Z+3)}$ for	(8)	CO 2	BTL 3	Apply
	all possible ROCs.				
	(ii) Find the z-transform and ROC of the sequence				
	$x(n) = \left[\frac{1}{3}\right]^{n-1} u(n-1)$	(5)	CO 2	BTL 3	Apply

5.	Evaluate the following:	(7)			
	(i) Inverse Z-Transform for $X(z)=1/(z-1.5)^4$; ROC : $ z > \frac{1}{4}$.		CO 2		
	(ii) The ROC of a finite duration signal	(3)		DILJ	Evaluate
	$\mathbf{x}(\mathbf{n}) = \{2, -1, -2, -3, 0, -1\}$				
	(iii) The ROC of a infinite duration signal $x(n)=2^n u(n)$	(3)			
6.	(i) A Linear time-invariant system is characterized by the	(7)	CO 2	BTL 3	Apply
	system function $H(z) = \frac{3 - 4z^{-1}}{1 - 3.5z^{-1} + 1.5z^{-2}}$				
	Specify the ROC of $H(z)$ and Illustrate the value of $h(n)$ for				
	the following conditions				
	(1) The system is stable (2) The system is causal				
	(3) The system is anticausal				
	(ii) Examine the value of $x(n)$ for the given $x(Z)$ with ROC				
	(1) $ z >2$	(6)	CO 2	BTL 4	Analyze
	(2) $ z < 2$	(0)		DIL	7 mary 20
	$X(z) = \frac{1+3z^{-1}}{1+3z^{-1}+2z^{-2}}$				
7.	(i) Evaluate the z-transform and ROC of $x(n)=r^n\cos(n\theta)u(n)$	(5)	CO 2	BTL 5	Evoluete
	(ii) Evaluate the Inverse z-transform of	(8)			Evaluate
	$X(z) = z/[3z^2-4z+1], ROC z >1, z <1/3, 1/3< z <1.$	(0)			
8.	(i) Calculate the causal signal $x(n)$ whose z-transform is	(8)	CO 2	BTL 3	Apply
	given by $(z) = \frac{1}{1-z^{-1}+0.5z^{-2}}$				
	(ii) Solve and obtain the z-transform of the signal	(5)			
	$x(n) = r^n(\cos n\Theta)u(n).$	(3)			
9.	Find the Z-transform of the following signals: (i) $\delta(n)$ (ii) $u(n)$	(13)	CO 2	BTL 3	Apply
	(iii) $a^n u(n)$ (iv) $n u(n)$				
10.	Find the impulse response, frequency response, magnitude	(13)	CO 2	BTL 3	Apply
	response and phase response of the second order system				
	$y(n) - y(n-1) + \frac{3}{16}y(n-2) = x(n) - \frac{1}{2}x(n-1)$				

11.	(i) What is the need for frequency response analysis?	(3)	CO 2	BTL 1	Remember
	(ii) Determine the frequency response and plot the				
	magnitude response and phase response for the system.	(10)	CO 2	BTL 5	Evaluate
	Y(n)=2x(n)+x(n-1)+y(n-2).		02		
12.	(i) Compute the plot for the convolution $x(n)*h(n)$ for the	(13)	CO 2	BTL3	Apply
	following signal : $x(n) = \{1, 1, 1, 1\}$ with $h(n) = \{6, 5, 4,\}$				
	3,2,1}.				
	(ii) Find the circular convolution of $x(n)=\{1,2, 3, 4\}$ with				
	$h(n) = \{4, 3, 2, 1\}$ by Matrix Method.				
13.	(i) Analyse the impulse response of the system described by	(8)	CO 2	BTL 4	Analyse
	the difference equation				
	$y(n) = y(n-1) - \left[\frac{1}{2}\right]y(n-2) + x(n) + x(n-1)$				
	using Z transform and discuss its stability.				
	(ii) Find the (i) linear convolution (ii) Circular Convolution				
	of $x(n) = \{2, 1, 1, 2\}$ with $h(n) = \{1, -1, -1, 1\}$.	(5)	CO 2	BTL 3	Apply
14.	(i) Find the response of the causal system	(8)	CO 2	BTL 4	Analyse
	y(n) - y(n-1) = x(n) + x(n-1) to the input $x(n)=u(n)$.				
	Test its stability.				
	(ii) Illustrate that a system having system function $H(z)$ is		~~ •		
	stable, if and only if all poles of $H(z)$ are inside the unit	(5)	CO 2	BTL 3	Apply
15	circle. $F_{i} = \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right)$	(12)	<u> </u>		A
15.	Find the Z-transform of : (1) $X(n)=n(n-1)u(n)$	(13)	02	BILS	Арріу
16.	(ii) $y(n)=an \sin n\phi u(n)$ (i) Find the inverse transform by division $X(z)=2/3z^2-4z+1$	(6)	CO 2	BTL3	Apply
	Where the ROC is : $ z > 1$ and $ z > 1/3$.				
	(ii) Evaluate the circular convolution for the following				
	sequences $x_1(n) = \{2, 1, 2, 1\}$ and $x_2(n) = \{1, 2, 3, 4\}$	(7)	CO 2	BTL5	Evaluate
17.	(i) Illustate the Z-transform of (i) $x(n)=a^n \cos \omega n u(n)$	(6)	CO 2	BTL3	Apply
	(ii) $x(n)=3^n x(n)$.				
	(ii) Evaluate the system function and impulse response of				
	the following system $y(n)-5y(n-1)=x(n)-x(n-1)$.	(7)	CO 2	BTL5	Evaluate
	PART-C	I		I	
1.	Find the inverse Z transform of $X(z) = {z^3+z^2}/{(z-1)(z-3)}$	(15)	CO 3	BTL 3	Apply
	ROC z >3.				

2.	(i) Analyse x(n) by convolution for	(10)	CO 3	BTL 4	Analyse
	$X(z) = \frac{1}{1}$				
	$(1-0.5z^{-1})(1+0.25z^{-1})$				
	(ii) Using scaling property, determine the z-transform of the				
	sequence $x(n) = \alpha^n \cos w_0 n$	(5)			
3.	Find the Inverse Z-transform of $X(Z)=1/(1+Z^{-1})(1-Z^{-1})^2$	(15)	CO 3	BTL 3	Apply
4.	(i) Find the circular convolution of the two sequences	(7)	CO 3	BTL 3	Apply
	$x_1(n) = \{1,3,5,7\}$ and $x_2(n) = \{2,4,6,8\}$				
	(ii) Find the value of y(n) using linear convolution of the		CO 3		
	two sequences $x_1(n) = \{1,2,2,1\}$ and $x_2(n) = \{1,2,2,2,1\}$	(8)	05	BTL 3	Apply
5.	(i) Evaluate x(n) for the following transfer function	(15)	CO 2	BTL 5	
	$X(Z)=1/(1-1.5Z^{-1}+0.5Z^{-2})$ for ROC : (i) $ z >1$ (ii) $ z <0.5$,				Evaluate
	(iii) $0.5 < z < 1$.				
Disorat	UNIT III - DISCRETE FOURIER TRANSFO	<u>PRM &</u>	<u>Commu</u>	<u>PUTA1</u>	<u>TON</u>
Discret	e Fourier Transform- properties, magnitude and phase represe	entation	- Compt	itation of	DFT using FFT
algorith	nm – DIT & DIF using radix 2 FFT – Butterfly structure.				
	PART – A				
ON	Questions			BT	Competence
Q.No	Questions			Lovel	Competence
Q.No	Develop the 4-point DFT of the sequence $x(n) = \{1,1\}$.		CO 3	Level BTL 5	Evaluate
Q.No 1. 2	Develop the 4-point DFT of the sequence $x(n) = \{1,1\}$.		CO 3	Level BTL 5 BTL 1	Evaluate Remember
Q.No 1. 2. 3.	Develop the 4-point DFT of the sequence x(n)={1,1}. Define the term FFT? List the advantages of it. Sketch and express the basic butterfly flow graph for the		CO 3 CO 3 CO 3	Level BTL 5 BTL 1 BTL 3	Evaluate Remember Apply
Q.No 1. 2. 3.	Develop the 4-point DFT of the sequence $x(n)=\{1,1\}$. Define the term FFT? List the advantages of it. Sketch and express the basic butterfly flow graph for the computation in the DIT FFT		CO 3 CO 3 CO 3	Level BTL 5 BTL 1 BTL 3	Evaluate Remember Apply
Q.No 1. 2. 3. 4.	Develop the 4-point DFT of the sequence $x(n)=\{1,1\}$. Define the term FFT? List the advantages of it. Sketch and express the basic butterfly flow graph for the computation in the DIT FFT. Calculate DFT for the sequence $x(n)=\{1,1,0,0\}$.		CO 3 CO 3 CO 3 CO 3	Level BTL 5 BTL 1 BTL 3 BTL 3	Evaluate Remember Apply
Q.No 1. 2. 3. 4. 5.	Develop the 4-point DFT of the sequence x(n)={1,1}. Define the term FFT? List the advantages of it. Sketch and express the basic butterfly flow graph for the computation in the DIT FFT. Calculate DFT for the sequence x(n)={1,1, 0,0}. Draw and explain the basic butterfly diagram for Radix 2		CO 3 CO 3 CO 3 CO 3 CO 3 CO 3	Level BTL 5 BTL 1 BTL 3 BTL 3 BTL 3	Evaluate Remember Apply Apply
Q.No 1. 2. 3. 4. 5.	Develop the 4-point DFT of the sequence $x(n)=\{1,1\}$. Define the term FFT? List the advantages of it. Sketch and express the basic butterfly flow graph for the computation in the DIT FFT. Calculate DFT for the sequence $x(n)=\{1,1,0,0\}$. Draw and explain the basic butterfly diagram for Radix 2 DIFFET		CO 3 CO 3 CO 3 CO 3 CO 3	Level BTL 5 BTL 1 BTL 3 BTL 3 BTL 3	Evaluate Remember Apply Apply Apply
Q.No 1. 2. 3. 4. 5. 6.	Develop the 4-point DFT of the sequence $x(n)=\{1,1\}$. Define the term FFT? List the advantages of it. Sketch and express the basic butterfly flow graph for the computation in the DIT FFT. Calculate DFT for the sequence $x(n)=\{1,1,0,0\}$. Draw and explain the basic butterfly diagram for Radix 2 DIFFFT. Point out the expression of the discrete Fourier Transform		CO 3 CO 3 CO 3 CO 3 CO 3 CO 3	Level BTL 5 BTL 1 BTL 3 BTL 3 BTL 3 BTL 4	Evaluate Remember Apply Apply Apply Analyse
Q.No 1. 2. 3. 4. 5. 6.	Develop the 4-point DFT of the sequence $x(n)=\{1,1\}$. Define the term FFT? List the advantages of it. Sketch and express the basic butterfly flow graph for the computation in the DIT FFT. Calculate DFT for the sequence $x(n)=\{1,1,0,0\}$. Draw and explain the basic butterfly diagram for Radix 2 DIFFFT. Point out the expression of the discrete Fourier Transform for $\delta(n)$		CO 3 CO 3 CO 3 CO 3 CO 3 CO 3	Level BTL 5 BTL 1 BTL 3 BTL 3 BTL 3 BTL 4	Evaluate Remember Apply Apply Apply Analyse
Q.No 1. 2. 3. 4. 5. 6. 7.	Develop the 4-point DFT of the sequence $x(n)=\{1,1\}$. Define the term FFT? List the advantages of it. Sketch and express the basic butterfly flow graph for the computation in the DIT FFT. Calculate DFT for the sequence $x(n)=\{1,1,0,0\}$. Draw and explain the basic butterfly diagram for Radix 2 DIFFFT. Point out the expression of the discrete Fourier Transform for $\delta(n)$. Define the term circular frequency shift property of DFT.		CO 3 CO 3 CO 3 CO 3 CO 3 CO 3 CO 3	Level BTL 5 BTL 1 BTL 3 BTL 3 BTL 3 BTL 4 BTL 1	Evaluate Remember Apply Apply Apply Analyse Remember
Q.No 1. 2. 3. 4. 5. 6. 7. 8.	Develop the 4-point DFT of the sequence $x(n)=\{1,1\}$. Define the term FFT? List the advantages of it. Sketch and express the basic butterfly flow graph for the computation in the DIT FFT. Calculate DFT for the sequence $x(n)=\{1,1,0,0\}$. Draw and explain the basic butterfly diagram for Radix 2 DIFFFT. Point out the expression of the discrete Fourier Transform for $\delta(n)$. Define the term circular frequency shift property of DFT. Differentiate DIT radix-2 FFT and DIF radix-2 FFT.		CO 3 CO 3 CO 3 CO 3 CO 3 CO 3 CO 3 CO 3	Level BTL 5 BTL 1 BTL 3 BTL 3 BTL 3 BTL 3 BTL 4 BTL 1 BTL 4	Evaluate Remember Apply Apply Apply Analyse Remember Analyse
Q.No 1. 2. 3. 4. 5. 6. 7. 8. 9.	Develop the 4-point DFT of the sequence $x(n)=\{1,1\}$. Define the term FFT? List the advantages of it. Sketch and express the basic butterfly flow graph for the computation in the DIT FFT. Calculate DFT for the sequence $x(n)=\{1,1,0,0\}$. Draw and explain the basic butterfly diagram for Radix 2 DIFFFT. Point out the expression of the discrete Fourier Transform for $\delta(n)$. Define the term circular frequency shift property of DFT. Differentiate DIT radix-2 FFT and DIF radix-2 FFT. Define the term Twiddle factor and Write its magnitude and		CO 3 CO 3 CO 3 CO 3 CO 3 CO 3 CO 3 CO 3	Level BTL 5 BTL 1 BTL 3 BTL 3 BTL 3 BTL 3 BTL 4 BTL 1 BTL 4 BTL 1	Evaluate Remember Apply Apply Apply Analyse Remember Analyse Remember
Q.No 1. 2. 3. 4. 5. 6. 7. 8. 9.	Develop the 4-point DFT of the sequence $x(n)=\{1,1\}$. Define the term FFT? List the advantages of it. Sketch and express the basic butterfly flow graph for the computation in the DIT FFT. Calculate DFT for the sequence $x(n)=\{1,1,0,0\}$. Draw and explain the basic butterfly diagram for Radix 2 DIFFFT. Point out the expression of the discrete Fourier Transform for $\delta(n)$. Define the term circular frequency shift property of DFT. Differentiate DIT radix-2 FFT and DIF radix-2 FFT. Define the term Twiddle factor and Write its magnitude and phase angle.		CO 3 CO 3 CO 3 CO 3 CO 3 CO 3 CO 3 CO 3	Level BTL 5 BTL 1 BTL 3 BTL 3 BTL 3 BTL 3 BTL 4 BTL 1 BTL 4 BTL 1	Evaluate Remember Apply Apply Apply Analyse Remember Analyse Remember
Q.No 1. 2. 3. 4. 5. 6. 7. 8. 9. 10	Develop the 4-point DFT of the sequence $x(n)=\{1,1\}$. Define the term FFT? List the advantages of it. Sketch and express the basic butterfly flow graph for the computation in the DIT FFT. Calculate DFT for the sequence $x(n)=\{1,1,0,0\}$. Draw and explain the basic butterfly diagram for Radix 2 DIFFFT. Point out the expression of the discrete Fourier Transform for $\delta(n)$. Define the term circular frequency shift property of DFT. Differentiate DIT radix-2 FFT and DIF radix-2 FFT. Define the term Twiddle factor and Write its magnitude and phase angle.		CO 3 CO 3 CO 3 CO 3 CO 3 CO 3 CO 3 CO 3	Level BTL 5 BTL 1 BTL 3 BTL 3 BTL 3 BTL 3 BTL 4 BTL 1 BTL 4 BTL 1	Evaluate Remember Apply Apply Apply Analyse Remember Analyse Remember
Q.No 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11	Develop the 4-point DFT of the sequence $x(n)=\{1,1\}$. Define the term FFT? List the advantages of it. Sketch and express the basic butterfly flow graph for the computation in the DIT FFT. Calculate DFT for the sequence $x(n)=\{1,1,0,0\}$. Draw and explain the basic butterfly diagram for Radix 2 DIFFFT. Point out the expression of the discrete Fourier Transform for $\delta(n)$. Define the term circular frequency shift property of DFT. Differentiate DIT radix-2 FFT and DIF radix-2 FFT. Define the term Twiddle factor and Write its magnitude and phase angle. List the properties of DFT.		CO 3 CO 3 CO 3 CO 3 CO 3 CO 3 CO 3 CO 3	Level BTL 5 BTL 1 BTL 3 BTL 3 BTL 3 BTL 3 BTL 4 BTL 1 BTL 1 BTL 1	Evaluate Remember Apply Apply Apply Analyse Remember Analyse Remember Remember
Q.No 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12	Develop the 4-point DFT of the sequence $x(n)=\{1,1\}$. Define the term FFT? List the advantages of it. Sketch and express the basic butterfly flow graph for the computation in the DIT FFT. Calculate DFT for the sequence $x(n)=\{1,1,0,0\}$. Draw and explain the basic butterfly diagram for Radix 2 DIFFFT. Point out the expression of the discrete Fourier Transform for $\delta(n)$. Define the term circular frequency shift property of DFT. Differentiate DIT radix-2 FFT and DIF radix-2 FFT. Define the term Twiddle factor and Write its magnitude and phase angle. List the properties of DFT. Define zero padding? And also mention its uses.		CO 3 CO 3 CO 3 CO 3 CO 3 CO 3 CO 3 CO 3	Level BTL 5 BTL 1 BTL 3 BTL 3 BTL 3 BTL 3 BTL 4 BTL 1 BTL 1 BTL 1 BTL 1	Evaluate Remember Apply Apply Apply Analyse Remember Analyse Remember Remember Remember
Q.No 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.	Develop the 4-point DFT of the sequence $x(n)=\{1,1\}$. Define the term FFT? List the advantages of it. Sketch and express the basic butterfly flow graph for the computation in the DIT FFT. Calculate DFT for the sequence $x(n)=\{1,1,0,0\}$. Draw and explain the basic butterfly diagram for Radix 2 DIFFFT. Point out the expression of the discrete Fourier Transform for $\delta(n)$. Define the term circular frequency shift property of DFT. Differentiate DIT radix-2 FFT and DIF radix-2 FFT. Define the term Twiddle factor and Write its magnitude and phase angle. List the properties of DFT. Define zero padding? And also mention its uses. Compute the number of multiplications and additions for 32		CO 3 CO 3 CO 3 CO 3 CO 3 CO 3 CO 3 CO 3	Level BTL 5 BTL 1 BTL 3 BTL 3 BTL 3 BTL 3 BTL 4 BTL 1 BTL 1 BTL 1 BTL 1 BTL 1 BTL 4	Evaluate Remember Apply Apply Apply Analyse Remember Analyse Remember Remember Remember Remember Analyse
Q.No 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.	Develop the 4-point DFT of the sequence $x(n)=\{1,1\}$. Define the term FFT? List the advantages of it. Sketch and express the basic butterfly flow graph for the computation in the DIT FFT. Calculate DFT for the sequence $x(n)=\{1,1,0,0\}$. Draw and explain the basic butterfly diagram for Radix 2 DIFFFT. Point out the expression of the discrete Fourier Transform for $\delta(n)$. Define the term circular frequency shift property of DFT. Differentiate DIT radix-2 FFT and DIF radix-2 FFT. Define the term Twiddle factor and Write its magnitude and phase angle. List the properties of DFT. Define zero padding? And also mention its uses. Compute the number of multiplications and additions for 32 point DFT and FFT.		CO 3 CO 3 CO 3 CO 3 CO 3 CO 3 CO 3 CO 3	Level BTL 5 BTL 1 BTL 3 BTL 3 BTL 3 BTL 3 BTL 4 BTL 1 BTL 1 BTL 1 BTL 1 BTL 1 BTL 1	Evaluate Remember Apply Apply Apply Analyse Remember Analyse Remember Remember Remember Remember Analyse
Q.No 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13.	Develop the 4-point DFT of the sequence $x(n)=\{1,1\}$. Define the term FFT? List the advantages of it. Sketch and express the basic butterfly flow graph for the computation in the DIT FFT. Calculate DFT for the sequence $x(n)=\{1,1,0,0\}$. Draw and explain the basic butterfly diagram for Radix 2 DIFFFT. Point out the expression of the discrete Fourier Transform for $\delta(n)$. Define the term circular frequency shift property of DFT. Differentiate DIT radix-2 FFT and DIF radix-2 FFT. Define the term Twiddle factor and Write its magnitude and phase angle. List the properties of DFT. Define zero padding? And also mention its uses. Compute the number of multiplications and additions for 32 point DFT and FFT.		CO 3 CO 3 CO 3 CO 3 CO 3 CO 3 CO 3 CO 3	Level BTL 5 BTL 1 BTL 3 BTL 3 BTL 3 BTL 4 BTL 1 BTL 1	EvaluateEvaluateRememberApplyApplyApplyAnalyseRememberAnalyseRememberRememberRememberRememberRememberRememberRememberRememberRememberRememberRememberRememberRememberRememberRememberAnalyseRemember

14.	Illustrate the term bit reversal as applied to FFT?		CO 3	BTL 3	Apply
15.	Distinguish between linear and circular convolution of two		CO3	BTL 4	Analyse
	sequences.				
16.	Compare the terms of DFT with DTFT.		CO 3	BTL 4	Analyse
17.	Compare the two methods used for the sectioned		CO 3	BTL 4	Analyse
	convolution				
18.	Solve and compute the DFT of $x(n) = \delta(n-n_0)$.		CO 3	BTL 3	Apply
19.	Express the term radix-4 FFT?		CO 3	BTL 5	Evaluate
20.	Develop DFT of the sequence $x(n)=\{0,1,2,3\}$ using DIF		CO 3	BTL 5	Evaluate
	algorithm.				
21.	Draw a 2 point DIT-FFT Butterfly structure. Mention some		CO 3	BTL 3	Apply
	of the applications of FFT Algorithm.				
22.	Write the circular time shift and frequency shift property of		CO 3	BTL 1	Remember
	DFT.				
23.	Sketch the basic butterfly diagram for DIT radix-2 FFT.		CO 3	BTL 3	Apply
24.	Find the 4-point DET of the sequence $x(n)=\cos(n\pi/4)$		CO 3	BTL 3	Apply
	PART – B	I	I	T	
1.	(i)Compute 4-point DFT of a sequence $x(n) = \{0, 1, 2, 3\}$ using DIT,DIF Algorithm.	(6)	CO 3	BTL 3	Apply
	(ii)Draw the flow graph of an 8-point DIF FFT algorithm and explain.	(7)	CO 3	BTL 3	Apply
2.	(i)Given $x(n) = n+1$, and N=8, Evaluate X(K) using DIF FFT algorithm.	(6)	CO 3	BTL 4	Analyse
	(ii)Use 4-point inverse FFT for the DFT result {6,-2+2j,-2,-2-2j} and Evaluate the input sequence.	(7)	CO 3	BTL 5	Evaluate
3.	Calculate the value of the inverse DFT of	(13)	CO 3	BTL 3	Apply
	$X(K) = \{7, -\sqrt{2} - j\sqrt{2}, -j, \sqrt{2} - j\sqrt{2}, 1, \sqrt{2} + j\sqrt{2}, j, -\sqrt{2} + j\sqrt{2}\}$				
4.	(i)Obtain 8 point DFT of the input sequence	(8)	CO 3	BTL 2	Understand
	$x(n) = \{1,1,1,1,1,1,1\}$ using decimation in frequency fast				
	Fourier transform algorithm.				
		(5)			
	(ii) How is the FFT algorithm applied to determine inverse		CO 3		
	discrete Fourier transform?			BTL 1	Remember
5.	An 8-Point sequence is given by $x(n) = \{2, 2, 2, 2, 1, 1, 1, 1\}$	(13)	CO 3	BTL 3	Apply
	Compute DFT of x(n) using radix 2 DIT FFT.				

6.	(i)Derive decimation-in-frequency, radix-2, FFT algorithm for evaluating DFT.	(9)	CO 3	BTL 5	Evaluate
	(ii) Find circular convolution of the sequences using concentric circle method $x_1 = \{2, 1, 2, 1\}$ and $x_2 = \{1, 2, 3, 4\}$.	(4)		BTL 3	Apply
7.	(i)State and analyse convolution property of DFT?	(7)	CO 3	BTL 4	Analyse
	(ii) Find the 4-point inverse DFT of	(6)		BTI 3	Apply
	$X(k) = \{10, -2+2j, -2, -2-2j\}$ using DIT-FFT algorithm			DILJ	тррту
0	Evaluate the output $y(n)$ of a filter whose impulse response.	(12)	CO 3	DTI 5	Evoluoto
0.	Evaluate the output $y(n)$ of a finite whose impulse response is $h(n) = \{1, 1, 1\}$ and input signal $y(n) = \{3, 1, 0, 1, 3, 2, 0, 1, 2, 1\}$	(13)	05	DIL J	Evaluate
	$15 \ln(1) - \{1,1,1\}$ and input signal $\lambda(1) - \{3,-1,0,1,3,2,0,1,2,1\}$				
0	Evaluate the DET of a sequence $v(n) = \{1, 2, 3, 4, 3, 2, 1\}$	(13)	CO 3	BTI 5	Evaluate
).	Evaluate the DFT of a sequence $x(n) = \{1, 2, 3, 4, 4, 5, 2, 1\}$, using decimation in time(DIT) algorithm	(13)		DILJ	Evaluate
10	(i) Derive the commutational equation for the 9 point FET.	(4)	CO^{2}		Analyza
10.	(1) Derive the computational equation for the 8-point FFT	(4)	05	DIL 4	Anaryse
	(ii) Given that $y(n) = \{0, 1, 2, 3, 4, 5, 6, 7\}$ Find $Y(k)$ using DIT.				
	FET Algorithm	(9)	CO 3	BTL 5	Evaluate
11	Find the output $v(n)$ of a filter whose impulse response is	())	CO 3	DIL 3	Apply
11.	$h(n) = \{1, 1, 1\}$ and input signal $y(n) = \{3, 1, 0, 1, 3, 2, 0, 1, 2, 1\}$	(13)	05	DIL 3	Аррту
	$\lim_{n \to \infty} \lim_{n \to \infty} \lim_{n$				
12	Find the IDET of the sequence	(13)	CO 3	BTL 3	Apply
12.	$X(K) = \{A \mid i \} = \{2, 414, 0, 1\} = \{0, 414, 0, 1] + \{0,$	(10)			1.155.3
	$X(K) = \{4, 1 = j2, 414, 0, 1 = j0, 414, 0, 1 + j0, 414, 0, 1 + j2, 414\}$				
12	$\sum_{k=1}^{\infty} \sum_{k=1}^{\infty} \sum_{k$	(12)	CO^{2}		Create
15.	$x(n) - \{1, 2, 3, 4, 1, 2, 3, 4\}$	(13)	05	DILO	Create
14.	Find the DFT of the sequence	(13)	CO 3	BTL 3	Apply
	(i) $x(n) = \{1, 0, 0, 1\}$				11 5
	(ii) $x(n) = \{1, -1, 1, -1\}$				
	using DIF Algorithm				
	(ii) Indicate how inverse DFT can be computed by using				
	FFT algorithm.				
15.	A 8-point sequence is given by $x(n) = \{2, 2, 2, 2, 1, 1, 1, 1\}$.	(13)	CO 3	BTL 3	Apply
	Compute 8-point DFT of $x(n)$ using radix-2 DIT FFT.				

16.	Explain the Decimation in frequency radix-2 FFT algorithm	(13)	CO 3	BTL 4	Analyze
	for evaluating N-Point DFT of the given sequence. Draw the				
	signal flow graph for N=8.				
17.	(i) Formulate the 8-point DFT of the sequence	(13)	CO 3	BTL 6	Create
	$x(n) = \{0.5, 0.5, 0.5, 0.5, 0.0, 0, 0, 0\}$ using the radix-2 decimation-				
	in-time algorithm.				
	PART-C				
		1	1	1	ſ
1.	(i) State and analyse the properties of DFT.	(10)	CO 3	BTL 4	Analyse
	(ii) Find the DFT of a sequence $x(n) = \{1/4, 1/4, 1/4, 0\}$, using	(5)	CO 3	BTL 3	Apply
	decimation in time(DIT) algorithm.				
2.	Determine the DFT of the sequence $x(n) = \{1,1,1,1,1,1,1,0\}$	(15)	CO 3	BTL 5	Evaluate
	using DIT algorithm.				
3.	Determine the DFT of the given sequence	(15)	CO 3	BTL 5	Evaluate
	$x(n) = \{1, 2, 3, 4, 4, 3, 2, 1\}$, using DIF FFT algorithm.				
4.	Compute IDFT of the sequence $x(n) = \{7, -0.707, -j0.707, -j0.707$	(15)	CO 3	BTL 4	Analyse
	j,0.707-j0.707,1,0.707+j0.707,j,-0.707+j0.707} using DIT				
	Algorithm.				
5.	(i) Compute the value of X(k) using DIF FFT Algorithm for N=8 and n \geq 0.	(10)	CO 3	BTL 4	Analyse
	(ii) Calculate the DFT of the sequence $x(n) = \{1, 1, -2, -2\}$				
		(5)	CO 3	BTL 3	Apply
	UNIT IV - DESIGN OF DIGITA	L FIL	<u>TERS</u>		
FIR &	IIR filter realization – Parallel & cascade forms. FIR design:	Window	ing Tech	niques –	Need and choice
of wind	dows - Linear phase characteristics. Analog filter design - Bu	utterwort	th and C	hebyshev	approximations;
IIR Filt	ters, digital design using impulse invariant and bilinear transform	mation V	Varping,	pre warpi	ng.
	PART – A				
Q.No	Questions			BT Level	Competence
1.	Express the need for employing window for designing FIR filter?		CO 4	BTL 2	Understand
2.	Point out the warping effect? Explain its effect on frequency		CO 4	BTL 4	Analyse

CO 4

CO 4

CO 4

CO 4

CO 4

BTL 1

BTL 6

BTL 2

BTL 1

BTL 4

Remember

Understand

Remember

Create

Analyse

response?

3.

4.

5.

6.

7.

Define warping effect.

method of IIR filter design.

Formulate the equation specifying Hamming window.

Explain the advantages and disadvantages of FIR filter? Define linear phase response of a filter?

Compare bilinear transformation and Impulse invariant

8.	Point out any two methods for digitizing the transfer function of an analog filter.		CO 4	BTL 4	Analyse
9.	Obtain the transfer function for a normalized butterworth filter of order 2		CO 4	BTL 2	Understand
10.	Define the term bilinear transformation? List the advantages		CO 4	BTL 1	Remember
11.	Show the diagram of causal FIR filter structure for length $M=5$		CO 4	BTL 3	Apply
12.	Draw the direct form–II structure of IIR filter.		CO 4	BTL 3	Apply
13.	Realize and explain the following causal linear phase FIR system function $H(z)=2/3 + z^{-1}+(2/3)z^{-2}$		CO 4	BTL 5	Evaluate
14.	Generalize the comment on the passband and stopband characteristics of butter worth filter.		CO 4	BTL 4	Analyse
15.	Distinguish between Butterworth and Chebyshev (Type-I) filter.		CO 4	BTL 4	Understand
16.	Draw the direct form - I realization for the given system y(n)=-0.1y(n-1)+0.2y(n-2)+3x(n)+3.6x(n-1)+0.6x(n-2).		CO 4	BTL 3	Apply
17.	Express the advantages and disadvantages of digital filters?		CO 4	BTL 4	Analyse
18.	Distinguish between IIR and FIR filter.		CO 4	BTL 4	Analyse
19.	The most straight forward approach to FIR filter design is to truncate the impulse response of an ideal IIR filter. Why this is usually an undesirable approach?		CO 4	BTL 2	Understand
20.	Evaluate the direct form-I realization for the given difference equation $y(n)=0.5y(n-1)-0.25y(n-2)+x(n)+0.4x(n-1)-0.25y(n-2)+x(n-1)-0.25y(n-2)+x(n-1)-0.25y(n-2)+x(n-1)-0.25y(n-2)+x(n-1)-0.25y(n-2)+x(n-1)-0.25y(n-2)+x(n-1)-0.25y(n-2)+x(n$		CO 4	BTL 5	Evaluate
21.	Compare bilinear transformation and impulse invariant method.		CO 4	BTL 4	Analyse
22.	Using backward difference for the derivative and convert the analog filter into digital filter given $H(S)=1/(S^2+16)$		CO 4	BTL 5	Evaluate
23.	Compare FIR and IIR Filters		CO 4	BTL 4	Analyse
24.	State relationship between the analog and digital filter using Bilinear transform.		CO 4	BTL 1	Remember
	PART – B			1	
1.	A low pass filter is to be designed with the following desired frequency response.	(13)	CO 4	BTL3	Apply
	$H_d(e^{j\omega}) = e^{-j2\omega}, \ -\pi/4 \le \omega \le \pi/4$				
	$0, \pi/4 < \omega \le \pi$				
	Calculate the filter coefficients $h_d(n)$ if the window function is defined as $\omega(n){=}\ 1,0\leq n\leq 4$				
	0. otherwise				
2.	Design a butterworth filter method using Bilinear	(13)	CO 4	BTL 6	Create
	transformation for the following specifications.				
	$0.8 \le \mathrm{He}^{\mathrm{jw}} \le 1$ $0 \le \mathrm{w} \le 0.2\pi$				
	$ \text{He}^{jw} \le 0.2$ $0.6 \ \pi \ \le w \le \pi$				

3.	(i)Determine the cascade and parallel realization for the system transfer function $H(z)=[3(2z^2+5z+4)]/[(2z+1)(z+2)]$.	(8)	CO 4	BTL 5	Evaluate
	(ii) What is Hamming Window Function? Obtain its frequency domain characteristics.	(5)	CO 4	BTL 1	Remember
4.	Design a Chebyshev filter using impulse invariance method	(13)	CO 4	BTL 6	Create
	for the following specification				
	$0.9 \le \text{He}^{jw} \le 1$ $0 \le w \le 0.25\pi$				
	$ He^{jw} \le 0.24 \qquad 0.5 \ \pi \ \le w \le \pi$				
5.	(i) Convert the analog filter with system function H(s) into digital IIR Filter by means of impulse invariant method :	(13)	CO 4	BTL 3	Apply
	H(S)=1/(S+0.2)(S+0.6).				
	(ii) Realize the following using cascade and parallel form :				
	$H(Z) = (3+3.6Z^{-1}+0.6Z^{-2})/(1+0.1Z^{-1}-0.2Z^{-2})$				
6.	Design a low pass FIR filter for the following specifications	(13)	CO 4	BTL 5	Evaluate
	using rectangular window function. Cut-off				
	frequency=500Hz; Sampling frequency=2000Hz; Order of				
	the filter=10.				
7.	(i) Implement the following system function using cascade	(6)	CO 4	BTL 4	Analyse
	structure: $H(Z) = 1/[(1+2z^{-1})(1-z^{-2})]$				
	(ii) Convert the following analog transfer function into				
	digital using impulse invariant technique with sampling	(7)			
	period T=1sec. $H(s)=[s+1]/[(s+3)(s+5)]$				
8.	(i) Realize a cascade and parallel realization for the system	(6)	CO 4	BTL 3	Apply
	having difference equation				
	y(n)+0.1y(n-1)-0.2y(n-2)=3x(n)+3.6x(n-1)+0.6x(n-2)				
	(ii) For the analog transfer function				
	$H(s) = \frac{2}{2}$	(7)		BTI 4	Analyze
	(s+1)(s+3)				1 mary 20
	Determine H(z) using bilinear transformation with T=1 sec.				

9.	Design a Chebyshev filter for the following specification using bilinear transformation.	(13)	CO 4	BTL 6	Create
	$0.8 \leq He^{jw} \leq 1 \qquad 0 \leq w \leq 0.2\pi$				
	$ \text{He}^{jw} \le 0.2$ $0.6 \ \pi \le w \le \pi$				
10.	(i) Explain the impulse invariant method of designing IIR	(5)	CO 4	BTL 1	Remember
	filter.				
	(ii) Design a second order digital low pass Butterworth				
	filter with a cut-off frequency 3.4 KHz at a sampling rate of	(8)	CO 4	BTL 6	Create
	8 KHz using bilinear transformation.				
11.	(i) Explain the bilinear transformation method of designing	(5)	CO 4	BTL 2	Understanding
	IIR filter.				
	(ii) Design a length-5 FIR band reject filter with a lower cut-				
	off frequency of 2KHz, an upper cut-off frequency of	(8)	CO 4	BTL 4	Analyze
	2.4KHz, and a sampling rate of 8000Hz using Hamming				
10	window.	(12)	<u> </u>		
12.	Design a filter using Hamming window with the	(13)	CO 4	BIL 6	Create
	specification $N=7$ of the system				
	$H_{d}e^{jw} = e^{-jSw}, -(\pi/4) \le w \le (\pi/4);$				
	$-(\pi/4) \le w \le \pi$ otherwise zero				
13.	Design and realise a Butterworth filter using impulse	(13)	CO 4	BTL 6	Create
	invariance method for the following specifications.				
	Monotonic pass band and stop band -3.01 dB cut off at 0.5π				
	rad magnitude down atleast 15dB at ω =0.75 π rad.				
14.	(i)Convert the analog filter with system function	(7)	CO 4	BTL 6	Create
	$H_a(s)=[s+0.1]/[(s+0.1)^2+9]$ into a digital IIR filter by				
	means of the impulsive invariance method.				
	(ii) Illustrate the direct form I and direct form ii structures				
	for the given difference equation	(6)	CO_{4}	BTI 3	Apply
	y(n)=y(n-1)-0.5y(n-2)+x(n)+x(n-1)+x(n+2).	(0)	0.4	DILJ	дрргу
15.	Design an IIR Filter using impulse invariant method	(13)	CO 4	BTL 6	Create
	technique for the given Ha(S)= $1/(S^2+17S+12)$. Assume T=1				
	sec. Realize this filter using Direct Form I and Direct Form				
	II.				

16.	Evaluate the Direct Form I, Direct Form II, Cascade and	(13)	CO 4	BTL 5	Evaluate
	Parallel Realization for the following system:				
	y(n) = -0.1y(n-1) + 0.2y(n-2) + 3x(n) + 3.6x(n-1) + 0.6x(n-2)				
17.	(i)If $H(S)=1/(S+1)(S+2)$, Find $H(z)$ using Impulse Invariant	(7)	CO 4	BTL 3	Evaluate
	Method for sampling frequency of 5 samples/sec.				
	(ii)Realize the given transfer function				
	$H(Z)=(4Z^2+11Z-2)/(Z+1)(Z-3)$ using Direct Form-II and		CO 4	BLT6	Create
	Parallel structure.				
	PART-C				
1.	Design an ideal high pass filter using Hanning window with	(15)	CO 4	BTL 6	Create
	the specification N=11 of the system				
	$H\left(e^{jw}\right) = \begin{cases} 1 & \frac{\pi}{4} \le w < \pi \end{cases}$				
	$ w \leq \frac{\pi}{4}$				
2.	Determine the order of the filter using Chebyshev	(15)	CO 4	BTL 6	Create
	approximation fot the given specification $a_p=3dB$, $a_s=16dB$,				
	$f_p=1$ KHz and $f_s=2$ KHz. Find H(s).				
3.	(i) Design a High pass filter using Hamming window with a	(8)	CO 4	BTL 6	Create
	cut-off frequency of 1.2 radians/sec and N=9.				
	(ii) Summarize the factors that decide the choice of window				
	in FIR filter design using window techniques. Also compare	(7)	CO 4	BTL 2	Understanding
	the marits and demarits of windowing techniques				
4.	Design a Butterworth filter using the Impulse invariance	(15)	CO 4	BTL 6	Create
	method for the following specifications.				
	$0.8 \le \mathrm{He}^{\mathrm{JW}} \le 1$ $0 \le \mathrm{W} \le 0.2\pi$				
	$ \mathrm{He}^{\mathrm{jw}} \le 0.2 \qquad 0.6 \ \pi \ \le \mathrm{w} \le \pi$				
	Realize the designed filter using direct form II structure.				
5.	Obtain the Direct form I, Direct form II, Cascade form	(15)	CO 4	BTL 6	Create
	structure for the system $H(Z)=(8Z^3-4Z^2+11Z-2)/(Z-0.25)(Z^2-$				
	Z+0.5)				
	UNIT V - <u>DIGITAL SIGNAL</u>	, PROC	CESSO	<u>RS</u>	
	Introduction – Architecture – Features – Addressing Form	ats – Fu	inctional	modes -	Introduction to
	Commercial DS Processors.				

	PART – A				
Q.No	Questions			BT Level	Competence
1.	Analyze how does a digital signal processor differ from		CO 5	BTL 4	Analyse
	other processor?				
2.	State any four applications of DSP.		CO 5	BTL 1	Remember
3.	List any two special feature of DSP architecture.		CO 5	BTL 1	Remember
4.	Give examples for fixed point processor and floating point		CO 5	BTL 1	Remember
	processor.				
5.	List the various registers used with ARAU.		CO 5	BTL 1	Remember
6.	What are the different buses of TMS 320C54X Processor		CO 5	BTL 1	Remember
	and list their functions?				
7.	What are the different stages in pipelining?		CO 5	BTL 1	Remember
8.	Express the different registers used with ARAU of DSP		CO 5	BTL 2	Understand
	processor?				
9.	Mention one important feature of Harvard architecture.		CO 5	BTL 1	Remember
10.	What is the advantage of pipelining?		CO 6	BTL 1	Remember
11.	What is meant by bit reversed addressing mode? What is the		CO 6	BTL 1	Remember
	application for which this addressing mode is preferred?				
12.	Compare the RISC and CISC processors.		CO 6	BTL 4	Analyse
13.	What are the buses used in DSP processor ?		CO 6	BTL 1	Remember
14.	List some example of commercial digital signal processor		CO 5	BTL 1	Remember
15.	Mention the features of DSP processor		CO 6	BTL 1	Remember
16.	Write the applications of commercial digital signal		CO 5	BTL 1	Remember
	processors.				
17.	Express the special features of DSP processors.		CO 5	BTL 2	Understand
18.	What is pipelining?		CO 5		
19.	Define the term warping.		CO 5	BTL 1	Remember
20.	What is BSAR instruction? Give an example.		CO 6	BTL 1	Remember
21.	Distinguish between TMS320C5X and TMS320C54X.		CO 6	BTL 1	Remember
22.	What are the special features of digital signal processors?		CO 6	BTL 1	Remember
23.	Mention some addressing modes of DSP Processor.		CO 6	BTL 1	Remember
24.	List the applications of DSP Processor.		CO 6	BTL 1	Remember
	PART – B				
1.	Draw the architecture of a DSP processor for implementing	(13)	CO 1	BTL 3	Apply
	a DSP algorithm. Explain its features.				

2.	(i)Name the different addressing modes of a DSP processor.	(8)	CO 1	BTL 2	Understand
	Explain them with an example.				
		(5)			
	(ii) Highlight the features of a commercial digital signal				
	processor.				
3.	(i)With a flow diagram explain the multiply and	(7)	CO 1	BTL 2	Understand
	accumulated (MAC) unit in a digital signal processor.				
		(6)			
4	(ii) write a note on commercial processors. With examples evaluate the different addressing formats	(13)	CO 6	BTL 4	Analyse
	supported by DSP processors for various signal processing	(15)		DIL	7 mary 50
	supported by DSF processors, for various signal processing				
	applications.				
5.	Draw and Explain the architecture of TMS 320C54X	(13)	CO 1	BTL 2	Understand
	processor.				
6.	Explain in detail about MAC unit and Pipelining.	(13)	CO 1	BTL 4	Analyse
7.	Explain the architecture of TMS320C50 with a neat	(13)	CO 1	BTL 4	Analyse
	diagram.				
8.	(i)Explain the types of operations performed by L functional	(7)	CO 5	BTL 4	Analyse
	mode.				
	(ii) Explain what is meant by bit reversed addressing mode.	(6)			
9.	Draw the functional block diagram of a digital signal	(13)	CO 5	BTL 3	Apply
	processor and explain.				
10	Explain Von Neumann, Harvard architecture and modified	(13)	CO 5	BTL 2	Understand
10.	Harvard architecture for the computer	(10)	000		Chicorotana
11.	(i)Explain how convolution is performed using a single	(7)	CO 5	BTL 2	Understand
	MAC unit				
	(ii) Explain the functional modes present in the DSP	(6)			
	processor	(0)			
12	(i)With peet diagram explain Von Neumann architecture	(7)	<u> </u>	BTI 2	Understand
12.	(i) What is MAC unit? Emploin its functions	(1)		DIL 2	Onderstand
13	(ii) what is MAC unit? Explain its functions.	(0) (13)	CO 5	BTI 2	Understand
15.	biseuss the advantages and disadvantages of vErv	(13)		DIL 2	Onderstand
14			<u> </u>		
14.	Describe the following things			BIL 2	Understand
	a. Memory mapped register addressing	(5)			
	b. Circular addressing mode	(5)			
	C				

15.	Explain the addressing formats and functional modes of a	(13)	CO 5	BTL 4	Analyse
	DSP Processor.				
16.	Explain the architecture of TMS320C50 with neat functional	(13)	CO 6	BTL 4	Analyse
	block diagram.				
17.	Explain about any one applications of DSP Processor.	(13)	CO 6	BTL 4	Analyse
	PART-C`				
1.	Explain how digital signal processors can be used to	(15)	CO 5	BTL 4	Analyse
	implement Biomedical Signal Processing Algorithms with a				
	case study of your choice.				
2	Explain the various types of addressing modes of digital	(15)	CO 6	BTL 4	Analyse
	signal processor with suitable example.				
3	Formulate the DSP architecture required for a DSP device	(15)	CO 6	BTL 6	Create
	to implement each of the following				
	(i) FIR filter				
	(ii) 8 point DIT-FFT				
4	Illustrate the structure of central processing unit and explain	(15)	CO 5	BTL 3	Apply
	each unit with its function.				
5.	Explain in detail the architectural features of a TMS320C5X	(15)	CO 5	BTL 5	Evaluate
	DSP Processor.				

COURSE OUTCOMES:

CO 1	Ability to understand the importance of Fourier transform, digital filters and DSP Processors.
CO 2	Ability to acquire knowledge on Signals and systems & their mathematical representation.
CO 3	Ability to understand and analyze the discrete time systems.
CO 4	Ability to analyze the transformation techniques & their computation.
CO 5	Ability to understand the types of filters and their design for digital implementation.
CO 6	Ability to acquire knowledge on programmability digital signal processor & quantization effects.